Age-dependent changes in axonal branching of single locus coeruleus neurons projecting to two different terminal fields.
نویسندگان
چکیده
Age-dependent changes in the axonal branching patterns of single locus coeruleus neurons, which innervate both the frontal cortex and hippocampus dentate gyrus, have been studied in male F344 rats. We used an electrophysiological approach involving antidromic activation to differentiate single from multi-threshold locus coeruleus neurons in each terminal field with age (7-27 mo of age). Most of these neurons have a single threshold in the young rats, whereas in the older brains, the neurons have multi-threshold responses. This implies an increased amount of axonal branching in the older brains. The time course of the increase differs in the two terminal fields, suggesting that the degree of plasticity or age-dependent increase in branching can differ across terminal fields.
منابع مشابه
Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures.
Hypocretin/orexin neurons give rise to an extensive projection system, portions of which innervate multiple regions associated with the regulation of behavioral state. These regions include the locus coeruleus, medial septal area, medial preoptic area, and substantia innominata. Evidence indicates that hypocretin modulates behavioral state via actions within each of these terminal fields. To un...
متن کاملThe effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections
As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...
متن کاملThe effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections
As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...
متن کاملThe effects of locus coeruleus electrical stimulation on brain waves of morphine dependent rats
Introduction: Opiates cause dependency via affect on central nervous system. Locus coeruleus nucleus is a main group of noradrenergic neurons in the brain that plays an important role in the expression of opioid withdrawal signs. During opioid withdrawal, brain waves change in addition to physical and behavioral signs. In this study, we examined the effects of locus coeruleus electrical sti...
متن کاملEffect of sensory deprivation and Locus Coeruleus (LC) electrical stimulation on the response properties of layer IV barrel cortex neurons in male rats
Introduction: Barrel cortex of rodents is responsible for sensory information processing from muzzle whiskers. Locus coeruleus (LC) as the main source of norepinephrine (NE) in the cortex, is effective on the sensory information processing. Methods: Rats were divided to 2 groups. One group underwent sensory deprivation (P4) and the other group served as control and did not undergo sensory d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2000